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Abstract. The main aspects of a discrete phase space formalism are presented and the discrete
dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is
discussed. A set of operator bases is defined in such a way that the Weyl–Wigner formalism is
shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the
limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is
shown not to be attained from discretization of the continuous case.

1. Introduction

The non-relativistic quantum phase space picture of quantum mechanics has deserved attention
for a long time as an interesting alternate framework for studying quantum systems [1–8]. In its
foundations, this approach basically deals with a particular correspondence between abstract
operators and certain functions of a pair of continuousc-variables, which represent them in the
quantum phase space, in such a form that the whole physical content is preserved. It has been
shown that such a correspondence can be implemented through a particular mapping that allows
one to represent the operators as functions, using the concept of a pseudo-distribution, such as
the Wigner function associated with the density operator [2], introduced in order to account
for the state of the physical system. In this connection, the well known Weyl–Wigner mapping
has been clearly established and discussed in relation to degrees of freedom with classical
counterparts and, in addition, it has also been shown that, in the phase space description, the
time evolution of a system is governed by the action of the Moyal bracket [3] over the Wigner
function. From an algebraic point of view, the Moyal bracket can be seen as a deformation
of the classical Poisson bracket [9], and plays an essential role in the dynamics on continuous
quantum phase spaces.

At the same time, it has also been verified that it is possible to establish the foundations
for quantumdiscretephase space descriptions in a way closely paralleling the continuous
formulation. In this case, a proposed association technique between operators and functions
of integers is strongly based on the Schwinger prescription for constructing bases in operator
spaces when one deals with degrees of freedom characterized by finite-dimensional state
spaces [10]. The Schwinger basis is known to have a factorization property, which allows
for a separation of degrees of freedom [10], each one being described by a prime number of
states. These operator bases, in turn, are constructed out of a family of products of cyclic
unitary operators which obey a particular commutation relation sometimes known as Weyl–
Schwinger algebra and, due to this inherent structure, the Schwinger operator bases elements
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can be shown to fulfil the more general Fairlie–Fletcher–Zachos sine algebra [11, 12]. It is
immediately seen that the association of the discrete labels of Schwinger’s unitary operators
with the points of a finite-dimensional lattice can indeed define such a phase space, as has been
proposed in the past [13–15]. In what refers to the state of the finite-dimensional system, its
phase space representative is a discrete Wigner function associated with the density operator
[13, 16] and has also been discussed in the context of prime factorization in [17, 18]. In spite
of the formalism developed for describing finite-dimensional degrees of freedom is exact, it
can also be used as an approximation technique for continuous quantum systems as rigorously
discussed in [19].

Although the operator basis proposed by Schwinger provides for a natural starting point for
phase space descriptions, another one has been proposed in the past which is the double Fourier
transform of that of Schwinger, and that explicitly implements a suitable modN symmetry
[13, 20–22], keeping the desirable property of prime factorization. As in the continuous case,
the description based on these operator bases can describe the time evolution of a selected
state of the physical system of interest in the corresponding discrete phase space, either for the
independent degrees of freedom, sieved by the Schwinger factorization, or for the full discrete
phase space as a whole. In this connection, it was established that the discrete mapped version
of the Liouville operator defines a quantum dynamical bracket which fully describes the time
evolution in the discrete phase space, and is associated with transformations that preserve the
presymplectic structure [23], with a role similar to that of the Moyal bracket in the continuous
case.

In this paper we want to address two questions. First, since it is known that when
the state space dimension goes to infinity (N → ∞), the algebra of the Schwinger unitary
operators is deeply related to that of the quantum canonical pair

{
q̂, p̂

}
, it is to be expected

that the mapping kernels must contain a limiting element which describes the continuous
degree of freedom. To discuss this question we propose here a new operator basis which
is a modification of the operator basis elements mentioned above, in such a form as to
explicitly symmetrize the discrete phase space labels range. The properties of this operator
basis are obtained, and are seen to be the discrete equivalent of the usual continuous case,
i.e. the Weyl–Wigner approach. Furthermore, we show that the limiting element, obtained
through a convenient procedure, is exactly the Weyl–Wigner continuous mapping kernel. The
symmetrization of the new basis also proves itself very important in connection with our
second question: what is the behaviour of the discrete dynamical bracket forN → ∞? In
this connection, we will show here that the Moyal bracket [3] emerges as the continuous limit
of the discrete dynamical bracket. Furthermore, as a byproduct of this deduction, we point to
the inherent difficulties in obtaining the discrete dynamical bracket from that of Moyal, due to
particular features of the discrete expression that could only be recovered in a very artificial
way.

Our paper is organized as follows. In section 2 we present a brief review of the continuous
Weyl–Wigner approach, and the discrete phase space formalism is presented in section 3. The
continuous case is reattained, as theN →∞ limit, in section 4, and the concluding remarks
are presented in section 5.

2. Brief review of the Weyl–Wigner formalism

Since we will be interested in comparing quantum continuous and discrete phase space mapping
techniques, let us briefly recall, in what follows, some basic results associated with one degree
of freedom.
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In the continuous case one takes advantage of the resolution of unity in both momentum
and coordinate representations in order to directly verify that an operatorÂ can be written as
[4, 24]

Â = 1

2πh̄

∫
dp dq a(p, q)1(p, q) (1)

with

a(p, q) =
∫

du exp

[
i

h̄
qu

]
〈p + 1

2u|Â|p − 1
2u〉 (2)

and

1(p, q) =
∫

dv exp

[
i

h̄
pv

]
|q + 1

2v〉〈q − 1
2v|. (3)

The functiona(p, q) is called the Weyl transform of the operatorÂ with respect to the
momentum and coordinate operatorsP̂ andQ̂. At the same time, one recognizes1(p, q) as
the continuous elements of an operator basis. Therefore, the Weyl transform of an operatorÂ

is then readily understood as the coefficient of its decomposition in the operator basis1(p, q).

Also, due to symmetry arguments, one can interchangeq → p andp→−q without any loss
of physical content in the mapping.

The Weyl transform is also obtained through the trace operation

a(p, q) = Tr[1(p, q)Â] (4)

and the operator basis elements have the following basic properties:

Tr[1(p, q)] = 1 (5)

Tr[1(p, q)1(p′, q ′)] = 2πh̄δ(p − p′)δ(q − q ′) (6)

Tr[1(p, q)1(p′, q ′)1(p′′, q ′′)] = 22 exp

[
2i

h̄

[
p(q ′′ − q ′) + p′(q − q ′′) + p′′(q ′ − q)] ].

(7)

It is not difficult to verify from equations (1), (5) and (6) that

Tr[Â] = 1

2πh̄

∫ ∞
−∞

dp dq a(p, q) (8)

and

Tr[F̂ Ĝ] = 1

2πh̄

∫
dp dq f (p, q)g(p, q). (9)

From equation (7) one obtains the mapped expression for the product of two operators, namely

(ÂB̂)(p, q) = 22

(2πh̄)2

∫
dp′′ dq ′′ dp′ dq ′ a(p′, q ′)b(p′′, q ′′)

× exp

[
2i

h̄

[
(q ′ − q)(p′′ − p)− (q ′′ − q)(p′ − p)] ] (10)

where(X̂)(p, q) stands for the phase space mapped representative of an operatorX̂. After
some algebraic manipulation equation (10) can be put in the form

(ÂB̂)(p, q) = exp

[
h̄

2i

(
∂

∂p

a ∂

∂q

b

− ∂

∂q

a ∂

∂p

b)]
a(p, q)b(p, q) (11)
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where the indices indicate over which function the derivatives act and, of course, the exponential
stands for its power expansion and, from an algebraic point of view, equation (11) can also
be understood as a composition of phase space functions with an associative star product
[25–27]. From this result one easily obtains the Weyl transformations of the commutator and
anticommutator ofÂ andB̂,

([Â, B̂])(p, q) = 2i sin

[
h̄

2i

(
∂

∂p

a ∂

∂q

b

− ∂

∂q

a ∂

∂p

b)]
a(p, q)b(p, q) (12)

({Â, B̂})(p, q) = 2 cos

[
h̄

2i

(
∂

∂p

a ∂

∂q

b

− ∂

∂q

a ∂

∂p

b)]
a(p, q)b(p, q). (13)

Expression (12) is known as the Moyal bracket of two operators [3], and it stands for the
representative of the commutator in terms of the two commuting classical variablesq andp.
It can immediately be seen that the anticommutator series starts with the product of the Weyl
transforms of the operatorŝA and B̂, while the commutator series starts withih̄ times the
Poisson bracket of̂A andB̂.

2.1. Dynamics

Considering now the density operator of a physical system associated, for simplicity, to a pure
state,

ρ̂(t) = |ψ(t)〉〈ψ(t)|. (14)

Its Weyl transform, in the wavefunction notationψ(q; t) ≡ 〈q|ψ(t)〉, reads

ρw(p, q; t) =
∫ ∞
−∞

dv exp

(
i

h̄
pv

)
ψ(q − 1

2v; t)ψ∗(q + 1
2v; t). (15)

The functionρw(p, q; t) is called the Wigner function and extensive discussions of its
interpretation and properties can be found in [2–8].

One can see that the expectation value of an operator can be written as

Ā(t) = Tr[ρ̂(t) Â] (16)

and, from equation (9) it follows that

Ā(t) = 1

2πh̄

∫ ∞
−∞

dp dq a(p, q) ρw(p, q; t). (17)

In what refers to the dynamics it is well known that the time evolution of a quantum system
can be described by the von Neumann–Liouville equation for the density operator, namely

∂

∂t
ρ̂(t) = − i

h̄
[Ĥ , ρ̂(t)]. (18)

With the help of equation (12), this equation can be directly mapped onto its equivalent in the
continuous quantum phase space,

∂

∂t
ρw(p, q; t) = 2

h̄
sin

[
h̄

2i

(
∂

∂p

h ∂

∂q

ρ

− ∂

∂q

h ∂

∂p

ρ)]
h(p, q)ρw(p, q) (19)

whereh(p, q) is the mapped expression of the Hamiltonian. Now, this equation describes
the dynamics of a quantum system in the Weyl–Wigner formalism and clearly stresses the
important role played by the Moyal bracket in this quantum phase space description of the
time evolution of the system state. At the same time, the Moyal bracket is at the root of the limit
procedure which allows us—concomitantly with the classical limit of the Wigner function—to
recover the classical Liouville dynamical equation governing the time evolution in classical
phase spaces [24]. Although of great interest, we will not concern ourselves here with the
wealthy field of semiclassical approximations.
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3. Discrete phase space formalism

In the same spirit as that presented in the previous section, we now can look for a discrete
phase space associated with a quantum finite-dimensional degree of freedom without a classical
counterpart. In a first approach, we can write (hereafter we will be considering ¯h = 1)

O(m, n) = Tr[B†(m, n)Ô] (20)

where the operatorsB(m, n) are elements of any given complete orthonormal operator basis.
Schwinger [10] proposed a basis with elements

{
Ŝ(m, n)

}
defined as

Ŝ(m, n) = UmV n√
N

exp

[
iπ

N
mn

]
m, n = 0, 1, 2, . . . N − 1 (21)

which is an orthonormal and complete basis in the operator space associated with the system
of interest.

Notwithstanding the conceptual importance of the formal approach to the finite-
dimensional operator bases as presented above, a new basis can be introduced which takes
full benefit of the quantum discrete canonical-like symmetry of the phase space [10]. To this
end we explicitly consider basis elements which implement this symmetry, namely

Ĝ(m, n) =
h∑

j,l=−h
T̂ (m, n; j, l) h = 1

2(N − 1) (22)

T̂ (m, n; j, l) = UjV l

N
exp

[
iπ

N
jl

]
exp

[
−2π i

N
(mj + nl)

]
exp[iπφ(j + h, l + h;N)] (23)

where

φ(j, l;N) = NINj INl − jINl − lINj (24)

and

INk =
[
k

N

]
(25)

takes the integral part ofk with respect toN . In this way, this phase is introduced in
this simple form just to carry out all the modN arithmetic that is involved in the phase
space mapping calculations as discussed in [20]. The exponential of the modular phase
exp[iπφ(j + h, l + h;N)] is easily seen to be equal to 1 when{j, l} both lie in the interval
[−h, h]. On the other hand, the presence of this phase ensures a symmetry in theT̂ (m, n; j, l)
factors so that

T̂ (m, n; j, l) = T̂ (m, n; j (modN), l(modN)) j, l ∈ Z. (26)

This feature will prove itself very useful when discussing the mapping of products of operators.
The basis elements we propose in equation (22) are in fact a suitable modification of the

basis elements presented in [20]. Furthermore, the basis elements presented in [20] have all
the properties collected in [22], and all the results found there can be applied here by just
taking care of the symmetric summation interval and its consequence on the modular phase
φ. However, the basis elements of equation (22) have an additional very important property of
being Hermitian, what can be easily proved.
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The basic properties follow:

Tr
[
Ĝ(m, n)

] = 1; (27)

Tr
[
Ĝ†(m, n)Ĝ(r, s)

] = Nδ[N ]
m,rδ

[N ]
n,s ; (28)

Tr
[
Ĝ†(m, n)Ĝ(u, v)Ĝ(r, s)

] = 1

N2

h∑
a,b,c,d=−h

exp

[
iπ

N
(bc − ad)

]
exp[iπ8(a, b, c, d;N)]

× exp

[
2π i

N
[a(m− u) + b (n− v) + c (m− r) + d(n− s)]

]
(29)

where

8(a, b, c, d;N) = −φ(a + c + h, b + d + h;N). (30)

Equations (27) and (28) are straightforwardly obtained and, due to its importance, equation (29)
is obtained in the appendix, where the role played by the phaseφ becomes clear. The trace
of an arbitrary number of basis elements can be found in [22]. It is worth noting that these
expressions are the discrete counterparts of equations (5)–(7), respectively.

Since the operator basis elements are Hermitian, it can be directly seen that Hermitian
operators have real phase space representative functions. Furthermore, the mapping of the
product of two operators is given by

(Ô1Ô2)(m, n) = Tr[Ĝ†(m, n)Ô1Ô2] (31)

(Ô1Ô2)(m, n) = 1

N2

h∑
u,v,r,s=−h

O1(u, v)O2(r, s)Tr[Ĝ†(m, n)Ĝ(u, v)Ĝ(r, s)] (32)

(Ô1Ô2)(m, n) = 1

N4

h∑
u,v,r,s=−h

h∑
a,b,c,d=−h

O1(u, v)O2(r, s)exp

[
iπ

N
(bc − ad)

]
× exp[iπ8(a, b, c, d;N)]

× exp

[
2π i

N
[a(m− u) + b (n− v) + c (m− r) + d(n− s)]

]
. (33)

The trace of an operator follows directly,

Tr[Ô1] = 1

N

h∑
m,n=−h

O1(m, n) (34)

while the trace of a product of two operators can be obtained using the Hermiticity of the basis
elements and equation (28),

Tr[Ô1Ô2] = 1

N2

h∑
m,n=−h

h∑
j,l=−h

O1(m, n)O2(j, l)Tr[Ĝ†(m, n)Ĝ(j, l)] (35)

= 1

N

h∑
m,n=−h

O1(m, n)O2(m, n) (36)

which is the discrete analogue to equation (9).
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Once we have the discrete phase space mapped expression for the product of two operators,
it is straightforward to obtain the mapped expressions for the commutator and anticommutator
of two operators,

[Ô1,Ô2](m, n) = 2i

N4

h∑
u,v,r,s=−h

h∑
a,b,c,d=−h

O1(u, v)O2(r, s)

× exp[iπ8(a, b, c, d;N)] 0(m, n, u, v, r, s, a, b, c, d;N) (37)

and

{Ô1,Ô2}(m, n) = 2

N4

h∑
u,v,r,s=−h

h∑
a,b,c,d=−h

O1(u, v)O2(r, s)

× exp[iπ8(a, b, c, d;N)] 02(m, n, u, v, r, s, a, b, c, d;N) (38)

respectively, where

0(m, n, u, v, r, s, a, b, c, d;N) = sin
[ π
N
(bc − ad)

]
× exp

[
2π i

N
[a(m− u) + b (n− v) + c (m− r) + d(n− s)]

]
(39)

and

02(m, n, u, v, r, s, a, b, c, d;N) = cos
[ π
N
(bc − ad)

]
× exp

[
2π i

N
[a(m− u) + b (n− v) + c (m− r) + d(n− s)]

]
. (40)

Equations (37) and (38) are to be compared directly with their continuous counterparts, namely
equations (12) and (13).

3.1. Dynamics in the discrete phase space

As before, the time evolution of a system is now described through the action of a dynamical
bracket on a density operator defined in a finite-dimensional space (for a pure state for
simplicity),

ρ̂(t) = |ψ(t)〉〈ψ(t)| (41)

whose Weyl representative is still called the Wigner function

ρw(m, n; t) = Tr[Ĝ†(m, n)ρ̂(t)]. (42)

As in the continuous case the expectation value of an operator can be written as

Ā(t) = Tr[ρ̂(t)Â] (43)

which, upon using (36), gives

Ā(t) = 1

N

h∑
u,v=−h

a(u, v)ρw(u, v; t). (44)

Again, the density operator obeys the von Neumann–Liouville equation,

∂

∂t
ρ̂(t) = −i[Ĥ , ρ̂(t)] (45)
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which can be mapped onto the discrete phase space if we use expression (37)

∂

∂t
ρw(m, n; t) = 2i

N4

h∑
u,v,r,s,a,b,c,d=−h

h(u, v)ρw(r, s; t)

× exp[iπ8(a, b, c, d;N)] 0(m, n, u, v, r, s, a, b, c, d;N) (46)

whereh(u, v) stands for the mapped expression of the Hamiltonian. This equation can be
rewritten as

∂

∂t
ρw(m, n; t) =

h∑
r,s=−h

L(m, n, r, s;N)ρw(r, s; t) (47)

where

L(m, n, r, s;N) = 2i

N4

h∑
u,v=−h

h∑
a,b,c,d=−h

h(u, v)

× exp[iπ8(a, b, c, d;N)] 0(m, n, u, v, r, s, a, b, c, d;N) (48)

is now identified as the discrete mapped expression of the Liouvillian of the system.
Equation (47), the discrete mapped von Neumann–Liouville equation, governs the time
evolution of the Wigner function in the discrete phase space and stresses the importance of the
mapped expression of the commutator embodied in the Liouvillian.

3.2. The time evolution of the Wigner function

To clarify this last point, let us consider the simple case of time-independent Hamiltonians,
and write, as usual,

ρ̂(t) = K̂(t, t0)ρ̂ (t0) K̂†(t, t0) (49)

whereK̂(t, t0) is the time evolution operator, namely,

K̂(t, t0) = exp

[
− i

h̄
H (t − t0)

]
. (50)

The corresponding discrete phase space mapped expression reads

ρw (u, v; t) = Tr
[
Ĝ† (u, v) K̂(t, t0)ρ̂ (t0) K̂

†(t, t0)
]

(51)

which, upon using the standard decomposition

ρ̂ (t0) =
∑
r,s

Ĝ (r, s) ρw (r, s; t0) (52)

can be written in a general form as

ρw (u, v; t) =
∑
r,s

P (u, v; t |r, s; t0 ) ρw (r, s; t0) (53)

where

P (u, v; t |r, s; t0 ) = Tr
[
Ĝ† (u, v) K̂(t, t0)Ĝ (r, s) K̂

†(t, t0)
]
. (54)

This last expression is the mapped propagator of the Wigner function in the discrete phase
space.
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Now, recalling that

ρ̂(t) = ρ̂ (t0)− i (t − t0)
h̄

[
H, ρ̂ (t0)

]
+

i2 (t − t0)2
2!h̄2

[
H,
[
H, ρ̂ (t0)

]]− · · · (55)

we see that its mapped expression is

ρw (u, v; t) =
∑
r,s

{
δ[N ]
r,u δ

[N ]
s,v −

i (t − t0)
h̄

L (u, v, r, s;N)

+
i2 (t − t0)2

2!h̄2

∑
x,y

L (u, v, x, y;N)L (x, y, r, s;N)− · · ·
}
ρw (r, s; t0). (56)

This series is a solution to equation (47) [28], and by a direct comparison we identify

P (u, v; t |r, s; t0 ) = δ[N ]
r,u δ

[N ]
s,v −

i (t − t0)
h̄

L (u, v, r, s;N)

+
i2 (t − t0)2

2!h̄2

∑
x,y

L (u, v, x, y;N)L (x, y, r, s;N)− · · · . (57)

This expression always associates, through the repeated action of the time-independent
Liouvillian, the Wigner function of integers(r, s) at t0 with a Wigner function of integers
(u, v) at timet , while the phase space grid is kept constant in time. For a more general time
dependence of the Hamiltonian, see [28].

As an example of the time evolution procedure let us consider the simple case of the
motion of a general magnetic moment in a constant magnetic field. Since the Hamiltonian is,
by a convenient choice of axis, simply

H = λSzB (58)

then the Liouvillian is given by [28]

L (u, v, r, s;N) = −λ
N2

∑
c,d,b 6=0

exp

{
2π i

N
[bv + c (u− r) + d (v − s)]

}
sin

[
π

N
bc

]

× cos(πb)

sin(πb/N)
exp[iπ8(0, b, c, d;N)]. (59)

If we choose an eigenstate of the angular momentum for the initial state, the corresponding
Wigner function will simply read

ρw (r, s; t0) = δ[N ]
s,s0

and therefore,∑
r,s

L (u, v, r, s;N) ρw (r, s; t0) =
∑
r,s

L (u, v, r, s;N) δ[N ]
s,s0
.

Since the summation inr givesδ[N ]
c,0 and the one ins is trivial, we end up with∑

c,d,b 6=0

exp

{
2π i

N
[bv + cu + d (v − s0)] + iπ8(0, b, c, d;N)

}

×sin(πbc/N) cos(πb)

sin(πb/N)
δ

[N ]
c,0 = 0 (60)

which guarantees that all terms but the first in equation (56) vanish (equivalently the Wigner
propagator is given only byδ[N ]

r,u δ
[N ]
s,v ); thus the propagated Wigner function is constant in time

as it should be,

ρw (r, s; t) = ρw (r, s; t0). (61)



1074 M Ruzzi and D Galetti

3.3. Comments on the mapped commutator

Surely, the mapped expression of the commutator deserves a deeper analysis. Although the sine
term appears as in the continuous case, it must be observed that, due to the finite-dimensional
character of the discrete phase space and the cyclic nature of the operators constituting the
basis elements, the phase8(a, b, c, d;N) plays an essential role. In this form, equation (37)
is the discrete phase space version of the continuous Moyal bracket, but in the discrete case it
embodies all the peculiarities of the finite character of the space as well as the torus topology
of the operator basis which are not present in the other case.

As mentioned before, the possibility of having a Schwinger basis for each primeN allows
us to construct a basis for each one of the degrees of freedom associated with any finite-
dimensional state space. Two extreme cases can be immediately separated and discussed from
the infinitely manyNs. The first case is related toN = 2, the only even prime. For this case, it
has been already argued that the Schwinger basis elements, as well as the one presented in [20],
are directly related to the Pauliσ operators and obey well known commutation relations. Thus,
they are directly associated with a spin-1

2 degree of freedom [10]. The second special case
corresponds to assumingN →∞,when one expects to recover the canonical pair of operators,
Q̂andP̂ , obeying the Heisenberg algebra and endowed with the standard commutation relation.
This limit has been proposed by Schwinger and implemented directly in the unitary operators
U andV [10], but the discussion of the behaviour of theoperator basisin that limit is still
lacking. Therefore, it seems to be of great interest to verify whether the operator bases proposed
here, expression (22), gives back the Weyl–Wigner basis, and therefore the Moyal bracket, in
that limit.

In the past, we have already shown that our operator bases correctly describe the
commutation relations of the mapped operators associated with the time evolution of a magnetic
dipole interacting with an external magnetic field (arbitrary finiteN ) [28]. In the opposite
situation, theN → ∞ limit case, must be related to the standard Weyl–Wigner formalism.
In what follows we will show that our operator basis indeed gives back the Weyl–Wigner
formalism in theN → ∞ limit, and we will discuss the subtleties in obtaining the explicit
limiting behaviour of the discrete mapped commutator.

4. Continuous limit of the DPSF

4.1. The Weyl–Wigner basis

The continuous limit of the discrete phase space formalism (DPSF) can be obtained as one
takes the limit of the dimension of the state space,N , to infinity (through prime integers) in a
prescribed form. To this end let us consider the proposed basis elements, equation (22),

Ĝ(j, l) =
h∑

m,n=−h
T̂ (j, l;m, n).

Since the phaseφ(m + h, n + h;N) will always be equal to zero in these sums, we may just
write

Ĝ(j, l) = 1

N

h∑
m,n=−h

UmV n exp

[
−2π i

N
(mj + nl)

]
exp

[
iπ

N
mn

]
. (62)

Let us also associate the operators

U = exp[−iεQ̂] V = exp[iεP̂ ] (63)
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with

ε2 = 2π

N
(64)

which becomes an infinitesimal asN →∞. We also perform the change of variables

−q = ε j −p = εl (65)

u = εm v = εn (66)

defining the intervals

1u = ε1m 1v = ε1n (67)

with 1m = 1n = 1. These substitutions lead to

Ĝ(p, q) = 1

ε2N

−εh∑
u,v=εh

1u1v exp[−iuQ̂] exp[+ivP̂ ] exp [i(qu + pv)] exp
[

1
2iuv

]
. (68)

ConsideringN →∞ we have

1u→ du 1v→ dv

yielding

Ĝ(p, q) = 1

2π

∫ −∞
∞

∫ −∞
∞

du dv exp[−iuQ̂] exp[ivP̂ ] exp
[

1
2iuv

]
exp [i(qu + pv)] (69)

= 1

2π

∫ ∞
−∞

∫ ∞
−∞

du dv exp[iu(q + 1
2v − Q̂)] exp[iv(p + P̂ )] (70)

which, with the help of the identity (that can be obtained through a similar limit of|uj 〉〈uj | =
1
N

∑h
k=−h u

k
jU

k),

|q〉〈q| = 1

2π

∫ ∞
−∞

dx exp[ix(q − Q̂)] (71)

gives

Ĝ(p, q) =
∫ ∞
−∞

dv |q + 1
2v〉〈q + 1

2v| exp[iv(p + P̂ )] (72)

Ĝ(p, q) =
∫ ∞
−∞

dv exp[ivp]|q + 1
2v〉〈q − 1

2v|. (73)

Upon recalling equation (3), we identify

Ĝ(p, q) = 1(p, q). (74)

Once this result has been established, we can see that the expression giving the phase space
mapping procedure can be rewritten as

Â = 1

N

h∑
m,n=−h

1m1 nA(m, n)Ĝ(m, n) (75)

such that, by assuming

p = ε m q = ε n
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with ε as defined in expression (64), it follows that

Â = 1

2π

h∑
m,n=−h

1p1qA(p, q)Ĝ(p, q). (76)

Upon taking theN →∞ limit we have

Â = 1

2π

∫ ∞
−∞

dp dq A(p, q)1(p, q) (77)

which is exactly equation (1) (up to an ¯h factor). Once the basis elements are reattained, all
further Weyl–Wigner results follow directly, and, in fact, they can also be obtained from their
discrete phase space counterparts just by taking the continuous limit in the same form as we
have done above.

4.2. The commutator and the Moyal bracket

In the previous sections we have emphasized the role played by the modular phaseφ in
connection with the boundary conditions. Due to its importance, we will perform in detail
theN →∞ limit for the product of two operators, which will lead us back to the continuous
Moyal bracket. To this end let us start from equation (33) and use expression (39),

(Ô1Ô2)(m, n) = 1

N4

h∑
u,v,r,s=−h

h∑
a,b,c,d=−h

1u1v1r1s1a1b1c1d

×O1(u, v)O2(r, s)exp

[
iπ

N
(bc − ad)

]
exp[iπ8(a, b, c, d;N)]

× exp

[
2π i

N
[a(m− u) + b(n− v) + c(m− r) + d(n− s)]

]
. (78)

If we perform the change of variables

a + c = j b + d = l
a − c = x b − d = z

(79)

the mapping of the product then reads,

(Ô1Ô2)(m, n) = 1

N4

h∑
u,v,r,s=−h

2h−|j |∑
x=−(2h−|j |)

2h−|l|∑
z=−(2h−|l|)

2h∑
j,l=−2h

1u1v1r1s1j1l 1
41x1z

×O1(u, v)O2(r, s)exp

[
iπ

2N
(jz− lx)

]
exp[iπφ(j + h, l + h;N)]

× exp

{
π i

N
[j (2m− r − u) + x (r − u) + l (2n− s − v) + z (s − v)]

}
(80)

where summations over the indices{x, z} are restricted to run in steps of 2. Realizing that
the phaseφ has a discontinuous nature, we see that it is convenient to break the summations
over{j, l} into nine different intervals, according to the different values assumed by the phase,
namely

2h∑
j,l=−2h

=
h∑

j,l=−h
+
−(h+1)∑
j,l=−2h

+
−(h+1)∑
j=−2h

h∑
l=−h

+
−(h+1)∑
j=−2h

2h∑
l=h+1

+
h∑

j=−h

−(h+1)∑
l=−2h

+
h∑

j=−h

2h∑
l=h+1

+
2h∑

j=h+1

−(h+1)∑
l=−2h

+
2h∑

j=h+1

h∑
l=−h

+
2h∑

j,l=h+1

. (81)
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Only the first of these nine different summations will give a non-zero contribution in the
continuous limit, which we will calculate in detail. On the other hand, just one of the remaining
eight terms will be calculated, since all others vanish in a similar fashion.

Let us consider the first sum in equation (81) contributing to equation (80), which we
denote by(Ô1Ô2)1(m, n), i.e. the non-zero contribution. As{j, l} both lie in the interval
[−h, h], the phaseφ is equal to zero. We consider again equation (64) with the introduction
of the new variables

ε m = p ε n = q (82)

and, for the remaining labels, we adopt

ε y = ȳ. (83)

The summations are once again replaced by integrals as the scaled variablesȳ become
continuous whenN → ∞ (ε → 0). Then, since the integration is performed over all
space, the constraints in the{x̄, z̄} summing intervals can be dropped, so that

(Ô1Ô2)1(p, q) = 1

4ε8N4

∫ ∞
−∞

dū dv̄ dr̄ ds̄ dj̄ dl̄ dx̄ dz̄ O1(ū, v̄)O2(r̄, s̄)

× exp
{

1
4iz̄
[
j̄ − 2 (v − s̄)]} exp

{
1
4ix

[
l̄ − 2 (r̄ − ū)]}

× exp
{

1
2i
[
j̄ (2m− r̄ − ū) + l (2n− s̄ − v̄)]}. (84)

Integration over{ 14 x̄, 1
4 z̄} yieldsδ[ l̄−2 (r̄ − ū)] andδ[j−2 (v̄ − s̄)], respectively, in such

a form that the integration over
{
j̄ , l̄
}

gives

(Ô1Ô2)1(p, q) = 4

(2π)2

∫
dū dv̄ dr̄ ds̄ O1(ū, v̄)O2(r̄, s̄)

× exp
{

1
2i [(v̄ − s̄)(2p − (ū + r̄)) + (r̄ − ū)(2q − (v̄ + s̄))]

}
(85)

that can be finally written as

(Ô1Ô2)1(p, q) = 4

(2π)2

∫
dū dv̄ dr̄ ds̄ O1(ū, v̄)O2(r̄, s̄)

× exp{2i [(s̄ − q)(ū− p)− (v̄ − q)(r̄ − p)]} (86)

which is exactly (up to an ¯h factor) equation (10). From this expression one can
straightforwardly obtain the Moyal bracket.

All the remaining sums can be treated in exactly the same way as above, giving obviously
analogous expressions except for the phaseφ,which will now be different from zero. This will
give rise to an additional phase with respect to the previous result. For example, considering
the contribution

(Ô1Ô2)9(m, n) = 1

N4

h∑
u,v,r,s=−h

2h−|j |∑
x=−(2h−|j |)

2h−|l|∑
z=−(2h−|l|)

2h∑
j,l=h+1

1u1v1r1s1j1l 1
41x1z

×O1(u, v)O2(r, s)exp

[
iπ

2N
(jz− lx)

]
exp[iπφ(j + h, l + h;N)]

× exp

{
π i

N
[j (2m− r − u) + x (r − u) + l (2n− s − v) + z (s − v)]

}
(87)
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it is easy to see that the presence of the term exp[iπ(j + l +N)] changes the behaviour of this
expression, respectively, to what has been done before. To evaluate it one should, before scaling
the variables from{j, l} to{j̄ , l̄},break up these summations into odd and even summing labels.
So, let us rewrite the above expression as

(Ô1Ô2)9(m, n) = 1

N4

h∑
u,v,r,s=−h

2h−|j |∑
x=−(2h−|j |)

2h−|l|∑
z=−(2h−|l|)

(
2h∑

j,l=h+1

)
1u1v1r1s1j1l 1

41x1z

×O1(u, v)O2(r, s)exp

[
iπ

2N
(jz− lx)

]
exp[iπφ(j + h, l + h;N)]

× exp

{
π i

N
[j (2m− r − u) + x (r − u) + l (2n− s − v) + z (s − v)]

}
(88)

where we have used the shortened form(
2h∑

j,l=h+1

)
=

2h∑
j=h+1,even

2h∑
l=h+1,even

+
2h∑

j=h+1,even

2h∑
l=h+1,odd

+
2h∑

j=h+1,odd

2h∑
l=h+1,even

+
2h∑

j=h+1,odd

2h∑
l=h+1,odd

. (89)

Since the exponential exp[iπ(j + l + N)] depends only on the parity of the labels{j, l}, its
contribution to the summations can be evaluateda priori yielding +1 for the first and last term
of the right-hand side of equation (89) and−1 for the other two. As the labelsj andl are scaled
and we take the continuous limit, there is no meaning in keeping the even/odd character of the
labels, and the sums will cancel out pairwise. The same reasoning is valid for all similar terms
in equation (81). That can also be seen in an intuitive fashion, realizing that in the continuous
limit the term exp[iπ(j + l+N)] will oscillate infinitely rapidly, and the subsequent integration
naturally vanishes.

It is important to stress that this only happens in the continuous infinite-dimensional limit.
In finite-N cases these sums do not vanish. We may also study the effects of this cancellation on
the expression for the commutator and the related Moyal bracket. In this connection, it can be
immediately seen that the expression for the continuous Moyal bracket casts its roots in only one
term of the discrete expression for the commutator since all others do not contribute in that limit.
Besides, in the limit process, some sums, thatwere notrepresentations of Kronecker deltas in
the discrete case, can be performed as they were transformed into integrals, equations (84) and
(85), yielding Dirac deltas which, in turn, were immediately integrated.

Therefore, in the opposite sense, we realize that one cannot recover the discrete
commutator by simply discretizing the continuous Moyal bracket, first because the summations
just mentioned cannot be recovered in a univocal way from the continuous result, and second,
according to equation (86), the Moyal bracket is associated with only one contribution of the
discrete dynamical bracket. In fact, one can only recover the discrete commutator from the
continuous one, through the introduction of the phases and summations discussed above in
a very artificial way. This clearly indicates that simply discretized Moyal bracket schemes
intended for the description of the dynamics of finite-dimensional degrees of freedom are
likely to fail.

5. Concluding remarks

In the previous sections we first recalled the Weyl–Wigner formalism which allows for a
continuous phase space description of quantum systems. It is well known that such a description
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is suitable for degrees of freedom described by continuous variables, although it fails for
degrees of freedom described by a finite-dimensional state space. We have then pointed out
that a formalism has been developed in the past that accounts for such systems when discrete
quantum phase spaces can then be constructed, which are labelled by discrete variables, that
can also be used to describe degrees of freedom without classical counterparts. The first
outcome of our work is that we have unified the approach for the discrete and continuous
cases.

One important feature of the discrete phase space formalism is that, due to a factorization
property of operator bases, as noticed by Schwinger, we can write a mapping kernel which
maps operators onto functions of discrete variables in the discrete phase space, for each one of
the degrees of freedom. Obviously, we can considerN → ∞ as a particular and interesting
case, since we expect it to agree with the Weyl–Wigner description. We also stress that the
symmetrization introduced here has ensured that our new basis elements are Hermitian, which
has led to a simple expression for the trace of the two operators, equation (36) (which has
direct and very important consequences on the calculation of expected values), and also has
ensured the limit to the Weyl–Wigner case.

Our first result consists in, as mentioned above, starting from a general expression for
the discrete mapping kernel, to show that the Weyl–Wigner continuous mapping kernel is
indeed reattained as a limiting case of the discrete one. Furthermore, one important result
also emerged. Let us recall that when we consider the dynamics in a continuous phase space
we are directly led to the Moyal bracket, which is the quantum analogue of the Poisson
bracket. On the other hand, we have a discrete bracket that governs the dynamics in discrete
finite-dimensional phase spaces. This discrete dynamical bracket, besides being endowed
with a presymplectic structure [23], has also being shown to properly evolve discrete Wigner
functions in time through a discrete finite-dimensional phase space [28]. Now, the discrete
mapping kernels are moduloN invariant as required [13], and this is accomplished through
the presence of phases dealing with integral parts of integers. When discussing theN →∞
limit of the discrete dynamical bracket, we notice a vanishing—due precisely to the subtle
and essential role played by the referred phases and the symmetrization of the interval of
the phase space labels—of all but one term which then allows the final limiting expression
to coincide with the Moyal bracket. As a result of this, it becomes clear that the Moyal
bracket, or discretized versions of it, are unable to correctly describe the dynamics of genuine
finite-dimensional degrees of freedom. A further remark is that, since the Poisson bracket
is known to emerge from the Moyal bracket, here shown to be a limiting case of a discrete
bracket, it is interesting to observe that the classical result casts its roots in the mathematical
formulation which is suitable for the description of degrees of freedom without classical
counterparts.

As a simple and straightforward conclusion, we state that the present method can be
proposed as a unified way of treating dynamics in quantum phase spaces, either continuous or
discrete finite dimensional.
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Appendix. Trace of three basis elements

Starting from the definition,

G(m, n) = 1

N

h∑
j,l=−h

UjV l exp

[
π i

N
jl

]
exp[iπφ(j, l;N)] exp

[
−2π i

N
(mj + nl)

]
(A1)

we write explicitly

Tr[G†(m, n)G(u, v)G(r, s)]

=
N−1∑
k=0

〈vk| 1
N

h∑
j,l=−h

U−jV −l exp

[
π i

N
jl

]
exp[−iπφ(j + h, l + h;N)]

× exp

[
2π i

N
(mj + nl)

]
1

N

h∑
a,b=−h

UaV b exp

[
π i

N
ab

]

× exp[iπφ(a + h, b + h;N)] exp

[
−2π i

N
(ua + bv)

]
1

N

h∑
c,d=−h

UcV d

× exp

[
π i

N
cd

]
exp[iπφ(c + h, d + h;N)] exp

[
−2π i

N
(cr + ds)

]
|vk〉 (A2)

Tr[G†(m, n)G(u, v)G(r, s)] = 1

N3

N−1∑
k=0

h∑
j,l=−h

h∑
a,b,c,d=−h

〈vk|U−jV −lUaV bUcV d |vk〉

× exp[−iπ(φ(j + h, l + h;N)] exp[iπφ(a + h, b + h;N)]

× exp[iπφ(c + h, d + h;N)] exp

[
π i

N
(jl + ab + cd)

]
× exp

[
2π i

N
(mj + nl − ua − bv − cr − ds)

]
. (A3)

Now let us calculate in detail the matrix element in (A3) using the Weyl–Schwinger
commutation relationV xUy = UyV x exp((2π i/N)xy),

〈vk|U−jV −lUaV bUcV d |vk〉 = 〈vk|Ua+c−jV b+d−l|vk〉 exp

[
2π i

N
(cb − cl − al)

]
(A4)

〈vk|U−jV −lUaV bUcV d |vk〉 = 〈vk|vk+a+c−j 〉 exp

[
2π i

N
k(b + d − l)

]
× exp

[
2π i

N
(cb − cl − al)

]
(A5)

〈vk|U−jV −lUaV bUcV d |vk〉 = δ[N ]
a+c−j,0 exp

[
2π i

N
k(b + d − l)

]
exp

[
2π i

N
(cb − cl − al)

]
.

(A6)
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Rewriting (A3),

Tr[G†(m, n)G(u, v)G(r, s)] = 1

N3

N−1∑
k=0

h∑
j,l=−h

h∑
a,b,c,d=−h

exp

[
2π i

N
k(b + d − l)

]
δ

[N ]
a+c−j,0

× exp[−iπ(φ(j + h, l + h;N)] exp[iπφ(a + h, b + h;N)]

× exp[iπφ(c + h, d + h;N)] exp

[
2π i

N
(cb − cl − al)

]
× exp

[
π i

N
(+j l + ab + cd)

]
exp

[
2π i

N
(mj + nl − ua − bv − cr − ds)

]
(A7)

the summation over the{k} label yields a delta function

Tr[G†(m, n)G(u, v)G(r, s)] = 1

N2

h∑
j,l=h

h∑
a,b,c,d=−h

δ
[N ]
a+c−j,0δ

[N ]
b+d−l,0

× exp[−iπ(φ(j + h, l + h;N)] exp[iπφ(a + h, b + h;N)]

× exp[iπφ(c + h, d + h;N)] exp

[
2π i

N
(cb − l(c + a)

]
× exp

[
π i

N
(jl + ab + cd)

]
exp

[
2π i

N
(mj + nl − ua − bv − cr − ds)

]
. (A8)

Summing over{j, l}, and making use of equation (26), we obtain

Tr[G†(m, n)G(u, v)G(r, s)] = 1

N2

h∑
a,b,c,d=−h

exp

[
2π i

N
(cb − (b + d)(a + c))

]
× exp[−iπ(φ(a + c + h, b + d + h;N)] exp[iπφ(a + h, b + h;N)]

× exp[iπφ(c + h, d + h;N)] exp

[
π i

N
((a + c)(b + d) + ab + cd)

]
× exp

[
2π i

N
(m(a + c) + n(b + d)− ua − bv − cr − ds)

]
. (A9)

Reordering and recalling that exp[iπφ(a + h, b + h;N)] = exp[iπφ(c + h, d + h;N)] = 1
in the considered ranges,

Tr[G†(m, n)G(u, v)G(r, s)] = 1

N2

h∑
a,b,c,d=−h

exp[−iπφ(a + c + h, b + d + h;N)]

× exp

[
π i

N
(bc − ad)

]
× exp

[
−2π i

N
(a(m− u) + b(n− v) + c(m− r) + d(n− s))

]
. (A10)
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